Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 13(279), p. 12943-12950, 2004

DOI: 10.1074/jbc.m313245200

Links

Tools

Export citation

Search in Google Scholar

pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The recycling mannose lectin ERGIC-53 operates as a transport receptor by mediating efficient endoplasmic reticulum (ER) export of some secretory glycoproteins. Binding of cargo to ERGIC-53 in the ER requires Ca2+. Cargo release occurs in the ERGIC, but the molecular mechanism is unknown. Here we report efficient binding of purified ERGIC-53 to immobilized mannose at pH 7.4, the pH of the ER, but not at slightly lower pH. pH sensitivity of the lectin was more prominent when Ca2+ concentrations were low. A conserved histidine in the center of the carbohydrate recognition domain was required for lectin activity suggesting it may serve as a molecular pH/Ca2+ sensor. Acidification of cells inhibited the association of ERGIC-53 with the known cargo cathepsin Z-related protein and dissociation of this glycoprotein in the ERGIC was impaired by organelle neutralization that did not impair the transport of a control protein. The results elucidate the molecular mechanism underlying reversible lectin/cargo interaction and establish the ERGIC as the earliest low pH site of the secretory pathway.