Published in

BioMed Central, BMC Veterinary Research, 1(18), 2022

DOI: 10.1186/s12917-022-03359-5

Links

Tools

Export citation

Search in Google Scholar

The host micro-RNA cfa-miR-346 is induced in canine leishmaniasis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Leishmaniases are a group of anthropo-zoonotic parasitic diseases caused by a protozoan of the Leishmania genus, affecting both humans and other vertebrates, including dogs. L. infantum is responsible for the visceral and occasionally cutaneous form of the disease in humans and canine leishmaniasis. Previously, we have shown that L. infantum induces a mild but significant increase in endoplasmic reticulum (ER) stress expression markers to promote parasites survival in human and murine infected macrophages. Moreover, we demonstrated that the miRNA hsa-miR-346, induced by the UPR-activated transcription factor sXBP1, was significantly upregulated in human macrophages infected with different L. infantum strains. However, the ER stress response in infected dogs, which represent an important reservoir for Leishmania parasite, was described once recently, whereas the miR-346 expression was not reported before. Therefore, this study aimed to investigate these pathways in the canine macrophage-like cell line DH82 infected by Leishmania spp. and to evaluate the presence of cfa-miR-346 in plasma of non-infected and infected dogs. The DH82 cells were infected with L. infantum and L. braziliensis parasites and the expression of cfa-mir-346 and several ER stress markers was evaluated by quantitative PCR (qPCR) at different time points. Furthermore, the cfa-miR-346 was monitored in plasma collected from non-infected dogs (n = 11) and dogs naturally infected by L. infantum (n = 18). Results The results in DH82 cells showed that cfa-mir-346 was induced at both 24 h and 48 h post-infection with all Leishmania strains but not with tunicamycin, accounting for a mechanism of induction independent from sXBP1, unlike what was previously observed in human cell lines. Moreover, the cfa-miR-346 expression analysis on plasma revealed a significant increase in infected dogs compared to non-infected dogs. Conclusions Here for the first time, we report the upregulation of cfa-miR-346 induced by Leishmania infection in canine macrophage-like cells and plasma samples of naturally infected dogs. According to our results, the cfa-miR-346 appears to be linked to infection, and understanding its role and identifying its target genes could contribute to elucidate the mechanisms underlying the host–pathogen interaction in leishmaniasis.