Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Computational Intelligence and Neuroscience, (2022), p. 1-11, 2022

DOI: 10.1155/2022/9576468

Links

Tools

Export citation

Search in Google Scholar

A Deterministic Model for Determining Degree of Friendship Based on Mutual Likings and Recommendations on OTT Platforms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In recent years, the application of various recommendation algorithms on over-the-top (OTT) platforms such as Amazon Prime and Netflix has been explored, but the existing recommendation systems are less effective because either they fail to take an advantage of exploiting the inherent user relationship or they are not capable of precisely defining the user relationship. On such platforms, users generally express their preferences for movies and TV shows and also give ratings to them. For a recommendation system to be effective, it is important to establish an accurate and precise relationship between the users. Hence, there is a scope of research for effective recommendation systems that can define a relationship between users and then use the relationship to enhance the user experiences. In this research article, we have presented a hybrid recommendation system that determines the degree of friendship among the viewers based on mutual liking and recommendations on OTT platforms. The proposed enhanced model is an effective recommendation model for determining the degree of friendship among viewers with improved user experience.