Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, FEMS Microbiology Ecology, 8(98), 2022

DOI: 10.1093/femsec/fiac078

Links

Tools

Export citation

Search in Google Scholar

Divergent gut microbiota in two closely related house mouse subspecies under common garden conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM–host interactions influence the fitness of holobionts and are, therefore, an integral part of evolution. The house mouse is a prominent model for GM–host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky–Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under seminatural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of codivergence with their hosts. Helicobacters represent promising candidates for studying GM–host coadaptations and the fitness effects of their interactions.