Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Marine Drugs, 7(20), p. 425, 2022

DOI: 10.3390/md20070425

Links

Tools

Export citation

Search in Google Scholar

Therapeutic Intervention with Dietary Chitosan Nanoparticles Alleviates Fish Pathological and Molecular Systemic Inflammatory Responses against Infections

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Marine bio-sourced chitosan nanoparticles (CSNP) are antimicrobial and immunomodulatory agents beneficial for fish medicine. Herein, dietary CSNP was investigated for the amelioration of the systemic inflammatory responses of an induced fish model. One hundred and forty-four rainbow trout were assigned to one pathogen-free and non-supplemented group (negative control), and three challenged groups: non-supplemented (positive control), CSNP-preventive, and CSNP-therapeutic. After a feeding experiment extended for 21 days, the organosomatic indices (OSI) and molecular aspects were assessed. After a challenge experiment extended for further 28 days, CSNP-therapeutic intervention was assessed on fish survival and systemic inflammatory responses on pathology, histo-morphology, and molecular aspects. With CSNP administration, OSI nonsignificantly decreased and the relative expression of targeted inflammatory-mediator genes was significantly increased. The CSNP-therapeutic fish showed an RPS of 80% as compared to the positive control group, and CSNP-therapeutic administration retained the highest gene expression augmentation up to 28 days after the challenge. Notably, the splenic reticulin fibers framework of the CSNP-therapeutic group retained the highest integrity among the groups during the infection. After recovery, reticulin fibers density in the CSNP-therapeutic samples was significantly higher than in the negative control group, which indicates high innate immunity. Thus, CSNP showed promising biotherapeutic features enhancing fish resistance against infections.