Published in

Oxford University Press, Geophysical Journal International, 2(231), p. 1421-1433, 2022

DOI: 10.1093/gji/ggac254

Links

Tools

Export citation

Search in Google Scholar

Crustal and uppermost mantle structure of Cape Verde from ambient noise tomography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

SUMMARY We present a seismic ambient noise tomography of the Cape Verde archipelago, located in the Atlantic Ocean, approximately 600 km west of Senegal. We used 38 seismic broad-band stations that continuously recorded for 10 months, in order to construct the first 3-D model of Sv-wave velocities for the crust and uppermost mantle beneath the Cape Verde region. We started by computing phase cross-correlations for vertical component recordings using all possible inter-island station pairs. Next, a time–frequency phase-weighted stack was applied to obtain robust Rayleigh-wave group-velocity dispersion curves in the period band between 10 and 24 s. Group-velocity maps at different periods are obtained by inverting the dispersion curves. We then inverted the group-velocity maps to obtain the 3-D shear wave velocity structure of the crust and uppermost mantle beneath Cape Verde. The final 3-D model extends from 8 km down to 23 km and has a lateral resolution of about 50 km. The crust in the southwestern sector, encompassing Fogo, presents lower S-wave velocities that may be caused by the presence of melt pockets and/or hydrothermal fluids circulation. The uppermost mantle beneath the northwestern sector is characterized by higher S-wave velocities in agreement with previous results obtained from Ps and Sp receiver functions. Those high-velocity anomalies can reflect non-altered crust or remnants of magma chambers or solidified basaltic intrusions, which fed the volcanism in these islands. Our maps revealed the presence of crustal underplating across the entire archipelago, yet stronger beneath the groups Santo Antão—São Vicente—São Nicolau and Fogo—Santiago—Maio.