Published in

IOP Publishing, 2D Materials, 4(9), p. 045009, 2022

DOI: 10.1088/2053-1583/ac7e59

Links

Tools

Export citation

Search in Google Scholar

Raman imaging of twist angle variations in twisted bilayer graphene at intermediate angles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the exact twist angle and its spatial homogeneity, there is a need for a fast and non-invasive characterization technique of the local twist angle, to be applied preferably right after stacking. We demonstrate that confocal Raman spectroscopy can be utilized to spatially map the twist angle in stacked bilayer graphene for angles between 6.5 and 8 when using a green excitation laser. The twist angles can directly be extracted from the moiré superlattice-activated Raman scattering process of the transverse acoustic (TA) phonon mode. Furthermore, we show that the width of the TA Raman peak contains valuable information on spatial twist angle variations on length scales below the laser spot size of ∼500 nm.