Published in

Future Science, Future Science OA, 6(8), 2022

DOI: 10.2144/fsoa-2022-0006

Links

Tools

Export citation

Search in Google Scholar

Downregulation of CYP17A1 by 20-hydroxyecdysone: plasma progesterone and its vasodilatory properties

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aim: To investigate the effect of 20-hydroxyecdysone on steroidogenic pathway genes and plasma progesterone, and its potential impact on vascular functions. Methods: Chimeric mice with humanized liver were treated with 20-hydroxyecdysone for 3 days, and hepatic steroidogenic pathway genes and plasma progesterone were measured by transcriptomics and GC–MS/MS, respectively. Direct effects on muscle and mesenteric arterioles were assessed by myography. Results: CYP17A1 was downregulated in 20-hydroxyecdysone-treated mice compared with untreated group (p = 0.04), with an insignificant increase in plasma progesterone. Progesterone caused vasorelaxation which was blocked by 60 mM KCl, but unaffected by nitric oxide synthase inhibition. Conclusion: In the short term, 20-hydroxyecdysone mediates CYP17A1 downregulation without a significant increase in plasma progesterone, which has a vasodilatory effect involving inhibition of voltage-dependent calcium channels, and the potential to enhance 20-hydroxyecdysone vasorelaxation.