Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Letters, 15(47), p. 3916, 2022

DOI: 10.1364/ol.461926

Links

Tools

Export citation

Search in Google Scholar

Ultrafast resonant exciton–plasmon coupling for enhanced emission in lead halide perovskite with metallic Ag nanostructures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Integrating metal halide perovskites onto plasmonic nanostructures has recently become a trending method of enabling superior emissive performance of perovskite nanophotonic devices. In this work, we present an in-depth study on the spontaneous emission properties of hybrid systems comprising CsPbBr3 nanocrystals and silver nanostructures. Specifically, a 5.7-fold increment of the photoluminescence (PL) intensity and a 1.65-fold enhancement of the PL relaxation rate is attained when the transition energy of CsPbBr3 is spectrally resonant with the oscillational frequency of Ag nanodisks (NDs), which is attributed to the intense exciton–plasmon coupling-induced Purcell effect. Furthermore, a 540-fs ultrafast energy transfer from the CsPbBr3 excitons to Ag plasmons is revealed by femtosecond pump-probe experiments, suggesting the key mechanism responsible for the Purcell-enhanced radiative emission. Our finding offers a unique understanding of the enhanced emissive behavior in the plasmon-coupled perovskite system and paves the way for further applications.