Published in

Bentham Science Publishers, Combinatorial Chemistry & High Throughput Screening, 8(9), p. 591-597

DOI: 10.2174/138620706778249730

Links

Tools

Export citation

Search in Google Scholar

LNA-modified oligodeoxynucleotide hybridization with DNA microarrays printed on nanoporous membrane slides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report a robust method for the detection of hybridization events using a microarray-based assay on a nanoporous membrane platform. The technique is characterized by a hybridization time of only 1 hour and uses Cy5- labeled, 7-mer oligodeoxynucleotide probes modified with locked nucleic acid (LNA) nucleotides. We show that the volume of the DNA spotted onto a nanomembrane can be reduced to ∼4 nL with detectable signal intensity. Moreover, the amount of the DNA target could be reduced to 4 fmol. The described approach could dramatically increase the throughput of techniques based on sequencing by hybridization, such as oligofingerprinting, by decreasing the total number of probes that are needed for analysis of large clone sets and reduction of the sample/reagent consumption. The method is particularly advantageous when numerous hybridization-based assays must be performed for characterization of sample sets of 100,000 or more.