The Company of Biologists, Disease Models and Mechanisms, 5(16), 2023
DOI: 10.1242/dmm.050101
Full text: Download
ABSTRACT The sinoatrial node (SAN) is the primary pacemaker of the mammalian heart, initiating its electrical activation and ensuring that the heart's functional cardiac output meets physiological demand. SAN dysfunction (SND) can cause complex cardiac arrhythmias that can manifest as severe sinus bradycardia, sinus arrest, chronotropic incompetence and increased susceptibility to atrial fibrillation, among other cardiac conditions. SND has a complex aetiology, with both pre-existing disease and heritable genetic variation predisposing individuals to this pathology. In this Review, we summarize the current understanding of the genetic contributions to SND and the insights that they provide into this disorder's underlying molecular mechanisms. With an improved understanding of these molecular mechanisms, we can improve treatment options for SND patients and develop new therapeutics.