Published in

The Company of Biologists, Biology Open, 8(11), 2022

DOI: 10.1242/bio.059401

Links

Tools

Export citation

Search in Google Scholar

Chromatin dynamics through mouse preimplantation development revealed by single molecule localisation microscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Most studies addressing chromatin behaviour during preimplantation development are based on biochemical assays that lack spatial and cell-specific information, crucial during early development. Here, we describe the changes in chromatin taking place at the transition from totipotency to lineage specification, by using direct stochastical optical reconstruction microscopy (dSTORM) in whole-mount embryos during the first stages of mouse development. Through the study of two post-translational modifications of Histone 3 related to active and repressed chromatin, H3K4me3 and H3K9me3 respectively, we obtained a time-course of chromatin states, showing spatial differences between cell types, related to their differentiation state. This analysis adds a new layer of information to previous biochemical studies and provides novel insight to current models of chromatin organisation during the first stages of development.