Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Diagnostics, 8(12), p. 1814, 2022

DOI: 10.3390/diagnostics12081814

Links

Tools

Export citation

Search in Google Scholar

Reduction in Preterm Preeclampsia after Contingent First-Trimester Screening and Aspirin Prophylaxis in a Routine Care Setting

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Objectives: Several multivariate algorithms for preeclampsia (PE) screening in the first trimester have been developed over the past few years. These models include maternal factors, mean arterial pressure (MAP), uterine artery Doppler (UtA-PI), and biochemical markers (pregnancy-associated plasma protein-A (PAPP-A) or placental growth factor (PlGF)). Treatment with low-dose aspirin (LDA) has shown a reduction in the incidence of preterm PE in women with a high-risk assessment in the first trimester. An important barrier to the implementation of first-trimester screening is the cost of performing tests for biochemical markers in the whole population. Theoretical contingent strategies suggest that two-stage screening models could also achieve high detection rates for preterm PE with lower costs. However, no data derived from routine care settings are currently available. This study was conducted to validate and assess the performance of a first-trimester contingent screening process using PlGF for PE, with prophylactic LDA, for decreasing the incidence of preterm PE. Methods: This was a two-phase study. In phase one, a contingent screening model for PE was developed using a multivariate validated model and a historical cohort participating in a non-interventional PE screening study (n = 525). First-stage risk assessment included maternal factors, MAP, UtA-PI, and PAPP-A. Several cut-off levels were tested to determine the best screening performance, and three groups were then defined (high-, medium-, and low-risk groups). PlGF was determined in the medium-risk group to calculate the final risk. Phase two included a validation cohort of 847 singleton pregnancies prospectively undergoing first-trimester PE screening using this approach. Women at high risk of PE received prophylactic treatment with 150 mg of LDA. The clinical impact of the model was evaluated by comparing the incidence of early-onset (<34 weeks) and preterm (<37 weeks) PE between groups. Results: Cut-off levels for the contingent screening model were chosen in the first and second stages of screening to achieve a performance with sensitivities of 100% and 80% for early-onset and preterm PE detection, respectively, with a 15% false positive rate. In the development phase, 21.5% (n = 113) of the women had a medium risk of PE and required second-stage screening. In the prospective validation phase, 15.3% (n = 130) of the women required second-stage screening for PlGF, yielding an overall screen-positive rate of 14.9% (n = 126). The incidence of preterm PE was reduced by 68.4% (1.9% vs. 0.6%, p = 0.031) after one year of screening implementation. Conclusions: Implementation of contingent screening for PE using PlGF in a routine care setting led to a significant reduction (68.4%) in preterm PE, suggesting that contingent screening can achieve similar results to protocols using PlGF in the whole population. This could have financial benefits, with a similar reduction in the rate of preterm PE.