Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-32065-x

Links

Tools

Export citation

Search in Google Scholar

Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe successful synthesis of superconducting infinite-layer nickelate thin films with the highest Tc ≈ 15 K has ignited great enthusiasm for this material class as potential analogs of the high-Tc cuprates. Pursuing a higher Tc is always an imperative task in studying a new superconducting material system. Here we report high-quality Pr0.82Sr0.18NiO2 thin films with Tconset ≈ 17 K synthesized by carefully tuning the amount of CaH2 in the topotactic chemical reduction and the effect of pressure on its superconducting properties by measuring electrical resistivity under various pressures in a cubic anvil cell apparatus. We find that the onset temperature of the superconductivity, Tconset, can be enhanced monotonically from ~17 K at ambient pressure to ~31 K at 12.1 GPa without showing signatures of saturation upon increasing pressure. This encouraging result indicates that the Tc of infinite-layer nickelates superconductors still has room to go higher and it can be further boosted by applying higher pressures or strain engineering in the heterostructure films.