Published in

American Astronomical Society, Astrophysical Journal Letters, 2(934), p. L24, 2022

DOI: 10.3847/2041-8213/ac822f

Links

Tools

Export citation

Search in Google Scholar

10 Yr Transformation of the Obscuring Wind in NGC 5548

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract A decade ago, the archetypal Seyfert-1 galaxy NGC 5548 was discovered to have undergone major spectral changes. The soft X-ray flux had dropped by a factor of 30 while new broad and blueshifted UV absorption lines appeared. This was explained by the emergence of a new obscuring wind from the accretion disk. Here we report on the striking long-term variability of the obscuring disk wind in NGC 5548 including new observations taken in 2021–2022 with the Swift Observatory and the Hubble Space Telescope’s Cosmic Origins Spectrograph. The X-ray spectral hardening as a result of obscuration has declined over the years, reaching its lowest in 2022, at which point we find the broad C iv UV absorption line to have nearly vanished. The associated narrow low-ionization UV absorption lines, produced previously when shielded from the X-rays, are also remarkably diminished in 2022. We find a highly significant correlation between the variabilities of the X-ray hardening and the equivalent width of the broad C iv absorption line, demonstrating that X-ray obscuration is inherently linked to disk winds. We derive for the first time a relation between the X-ray and UV covering fractions of the obscuring wind using its long-term evolution. The diminished X-ray obscuration and UV absorption are likely caused by an increasingly intermittent supply of outflowing streams from the accretion disk. This results in growing gaps and interstices in the clumpy disk wind, thereby reducing its covering fractions.