Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(12), 2022

DOI: 10.1038/s41598-022-16931-8

Links

Tools

Export citation

Search in Google Scholar

Understanding structure–properties relationships of porphyrin linked to graphene oxide through π–π-stacking or covalent amide bonds

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTwo graphene oxide nanoassemblies using 5-(4-(aminophenyl)-10,15,20-triphenylporphyrin (TPPNH2) were fabricated by two synthetic methods: covalent (GO-CONHTPP) and noncovalent bonding. GO-CONHTPP was achieved through amide formation at the periphery of GO sheets and the hybrid material was fully characterized by FTIR, XPS, Raman spectroscopy, and SEM. Spectroscopic measurements together with theoretical calculations demonstrated that assembling TPPNH2 on the GO surface in DMF-H2O (1:2, v/v) via non-covalent interactions causes changes in the absorption spectra of porphyrin, as well as efficient quenching of its emission. Interestingly, covalent binding to GO does not affect notably neither the porphyrin absorption nor its fluorescence. Theoretical calculations indicates that close proximity and π–π-stacking of the porphyrin molecule with the GO sheet is possible only for the non-covalent functionalization. Femtosecond pump–probe experiments revealed that only the non-covalent assembly of TPPNH2 and GO enhances the efficiency of the photoinduced electron transfer from porphyrin to GO. In contrast to the non-covalent hybrid, the covalent GO-CONHTPP material can generate singlet oxygen with quantum yields efficiency (ΦΔ = 0.20) comparable to that of free TPPNH2 (ΦΔ = 0.26), indicating the possible use of covalent hybrid materials in photodynamic/photothermal therapy. The spectroscopic studies combined with detailed quantum-chemical analysis provide invaluable information that can guide the fabrication of hybrid materials with desired properties for specific applications.