Dissemin is shutting down on January 1st, 2025

Published in

Springer, Acta Neurochirurgica, 1(166), 2024

DOI: 10.1007/s00701-024-05955-w

Links

Tools

Export citation

Search in Google Scholar

Navigated bedside implantation of external ventricular drains with mobile health guidance: technical note and case series

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose External ventricular drain (EVD) implantation is one of the fundamental procedures of emergency neurosurgery usually performed freehand at bedside or in the operating room using anatomical landmarks. However, this technique is frequently associated with malpositioning leading to complications or dysfunction. Here, we describe a novel navigated bedside EVD insertion technique, which is evaluated in a clinical case series with the aim of safety, accuracy, and efficiency in neurosurgical emergency settings. Methods From 2021 to 2022, a mobile health–assisted navigation instrument (Thomale Guide, Christoph Miethke, Potsdam, Germany) was used alongside a battery-powered single-use drill (Phasor Health, Houston, USA) for bedside EVD placement in representative neurosurgical pathologies in emergency situations requiring ventricular cerebrospinal fluid (CSF) relief and intracranial pressure (ICP) monitoring. Results In all 12 patients (8 female and 4 male), navigated bedside EVDs were placed around the foramen of Monro at the first ventriculostomy attempt. The most frequent indication was aneurysmal subarachnoid hemorrhage. Mean operating time was 25.8 ± 15.0 min. None of the EVDs had to be revised due to malpositioning or dysfunction. Two EVDs were converted into a ventriculoperitoneal shunt. Drainage volume was 41.3 ± 37.1 ml per day in mean. Mean length of stay of an EVD was 6.25 ± 2.8 days. Complications included one postoperative subdural hematoma and cerebrospinal fluid infection, respectively. Conclusion Combining a mobile health–assisted navigation instrument with a battery-powered drill and an appropriate ventricular catheter may enable and enhance safety, accuracy, and efficiency in bedside EVD implantation in various pathologies of emergency neurosurgery without adding relevant efforts.