Published in

American Association for the Advancement of Science, Science, 6575(374), p. 1621-1626, 2021

DOI: 10.1126/science.abl8506

Links

Tools

Export citation

Search in Google Scholar

Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

How the Delta variant evades defenses In the course of the COVID-19 epidemic, variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, some of which evade immunity or increase transmission. In late 2020, the Delta and Kappa variants were detected, and the Delta variant became globally dominant by June 2021. McCallum et al . show that vaccine-elicited serum-neutralizing activity is reduced against these variants. Based on biochemistry and structural studies, the authors show that mutations in the domain that binds the ACE2 receptor abrogate binding to some monoclonal antibodies but do not improve ACE2 binding, suggesting that they emerged to escape immune recognition. Remodeling of the N-terminal domain allows the variants to escape recognition by most neutralizing antibodies that target it. The work could guide the development of next-generation vaccines and antibody therapies. —VV