Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 2024

DOI: 10.1200/jco.23.00295

Links

Tools

Export citation

Search in Google Scholar

Comprehensive Inherited Risk Estimation for Risk-Based Breast Cancer Screening in Women

Journal article published in 2024 by Nina Mars ORCID, Sini Kerminen ORCID, Max Tamlander ORCID, Matti Pirinen, Eveliina Jakkula ORCID, Kirsimari Aaltonen, Tuomo Meretoja, Sirpa Heinävaara ORCID, Elisabeth Widén ORCID, Samuli Ripatti ORCID, Aarno Palotie, Mark Daly, Bridget Riley-Gills, Howard Jacob, Dirk Paul and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE Family history (FH) and pathogenic variants (PVs) are used for guiding risk surveillance in selected high-risk women but little is known about their impact for breast cancer screening on population level. In addition, polygenic risk scores (PRSs) have been shown to efficiently stratify breast cancer risk through combining information about common genetic factors into one measure. METHODS In longitudinal real-life data, we evaluate PRS, FH, and PVs for stratified screening. Using FinnGen (N = 117,252), linked to the Mass Screening Registry for breast cancer (1992-2019; nationwide organized biennial screening for age 50-69 years), we assessed the screening performance of a breast cancer PRS and compared its performance with FH of breast cancer and PVs in moderate- ( CHEK2)- to high-risk ( PALB2) susceptibility genes. RESULTS Effect sizes for FH, PVs, and high PRS (>90th percentile) were comparable in screening-aged women, with similar implications for shifting age at screening onset. A high PRS identified women more likely to be diagnosed with breast cancer after a positive screening finding (positive predictive value [PPV], 39.5% [95% CI, 37.6 to 41.5]). Combinations of risk factors increased the PPVs up to 45% to 50%. A high PRS conferred an elevated risk of interval breast cancer (hazard ratio [HR], 2.78 [95% CI, 2.00 to 3.86] at age 50 years; HR, 2.48 [95% CI, 1.67 to 3.70] at age 60 years), and women with a low PRS (<10th percentile) had a low risk for both interval- and screen-detected breast cancers. CONCLUSION Using real-life screening data, this study demonstrates the effectiveness of a breast cancer PRS for risk stratification, alone and combined with FH and PVs. Further research is required to evaluate their impact in a prospective risk-stratified screening program, including cost-effectiveness.