Published in

MDPI, Materials, 24(16), p. 7644, 2023

DOI: 10.3390/ma16247644

Links

Tools

Export citation

Search in Google Scholar

Point-Contact Spectroscopy in Bulk Samples of Electron-Doped Cuprate Superconductors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Point-contact spectroscopy was performed on bulk samples of electron-doped high temperature superconductor Nd2−xCexCuO4−δ. The samples were characterized using X-ray diffraction and scanning electron microscopy equipped with a wavelength-dispersive spectrometer and an electron backscatter diffraction detector. Samples with Ce content x = 0.15 showed the absence of spurious phases and randomly oriented grains, most of which had dimensions of approximately 220 µm2. The low-bias spectra in the tunneling regime, i.e., high-transparency interface, exhibited a gap feature at about ±5 meV and no zero-bias conductance, despite the random oriented grains investigated within our bulk samples, consistent with most of the literature data on oriented samples. High-bias conductance was also measured in order to obtain information on the properties of the barrier. A V-shape was observed in some cases, instead of the parabolic behavior expected for tunnel junctions.