Published in

arXiv, 2022

DOI: 10.48550/arxiv.2204.06003

EDP Sciences, Astronomy & Astrophysics, (664), p. L13, 2022

DOI: 10.1051/0004-6361/202243761

Links

Tools

Export citation

Search in Google Scholar

The Radcliffe wave as the gas spine of the Orion arm

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The Radcliffe wave is a ∼3 kpc long coherent gas structure containing most of the star-forming complexes near the Sun. In this Letter we aim to find a Galactic context for the Radcliffe wave by looking into a possible relationship between the gas structure and the Orion (local) arm. We use catalogs of massive stars and young open clusters based on Gaia Early Data Release 3 (EDR3) astrometry, in conjunction with kiloparsec-scale 3D dust maps, to investigate the Galactic XY spatial distributions of gas and young stars. We find a quasi-parallel offset between the luminous blue stars and the Radcliffe wave, in that massive stars and clusters are found essentially inside and downstream from the Radcliffe wave. We examine this offset in the context of color gradients observed in the spiral arms of external galaxies, where the interplay between density wave theory, spiral shocks, and triggered star formation has been used to interpret this particular arrangement of gas and dust as well as OB stars, and outline other potential explanations as well. We hypothesize that the Radcliffe wave constitutes the gas reservoir of the Orion (local) arm, and that it presents itself as a prime laboratory to study the interface between Galactic structure, the formation of molecular clouds in the Milky Way, and star formation.