Published in

MDPI, Electronics, 15(11), p. 2475, 2022

DOI: 10.3390/electronics11152475

Links

Tools

Export citation

Search in Google Scholar

The Transition Phenomenon of (1,0)-d-Regular (k, s)-SAT

Journal article published in 2022 by Zufeng Fu ORCID, Haiying Wang, Jinjiang Liu, Jincheng Zhou ORCID, Daoyun Xu, Yihai Pi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

For a d-regular (k,s)-CNF formula, a problem is to determine whether it has a (1,0)-super solution. If so, it is called (1,0)-d-regular (k,s)-SAT. A (1,0)-super solution is an assignment that satisfies at least two literals of each clause. When the value of any one of the variables is flipped, the (1,0)-super solution is still a solution. Super solutions have gained significant attention for their robustness. Here, a d-regular (k,s)-CNF formula is a special CNF formula with clauses of size exactly k, in which each variable appears exactly s-times, and the absolute frequency difference between positive and negative occurrences of each variable is at most a nonnegative integer d. Obviously, the structure of a d-regular (k,s)-CNF formula is much more regular than other formulas. In this paper, we certify that, for k≥5, there is a critical function φ(k,d) such that, if s≤φ(k,d), all d-regular (k,s)-CNF formulas have a (1,0)-super solution; otherwise (1,0)-d-regular (k,s)-SAT is NP-complete. By the Lopsided Local Lemma, we get an existence condition of (1,0)-super solutions and propose an algorithm to find the lower bound of φ(k,d).