Published in

MDPI, Nanomaterials, 15(12), p. 2704, 2022

DOI: 10.3390/nano12152704

Links

Tools

Export citation

Search in Google Scholar

Monolithic Integration of O-Band InAs Quantum Dot Lasers with Engineered GaAs Virtual Substrate Based on Silicon

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The realization of high-performance Si-based III-V quantum-dot (QD) lasers has long attracted extensive interest in optoelectronic circuits. This manuscript presents InAs/GaAs QD lasers integrated on an advanced GaAs virtual substrate. The GaAs layer was originally grown on Ge as another virtual substrate on Si wafer. No patterned substrate or sophisticated superlattice defect-filtering layer was involved. Thanks to the improved quality of the comprehensively modified GaAs crystal with low defect density, the room temperature emission wavelength of this laser was allocated at 1320 nm, with a threshold current density of 24.4 A/cm−2 per layer and a maximum single-facet output power reaching 153 mW at 10 °C. The maximum operation temperature reaches 80 °C. This work provides a feasible and promising proposal for the integration of an efficient O-band laser with a standard Si platform in the near future.