Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(515), p. 5539-5555, 2022

DOI: 10.1093/mnras/stac2175

Links

Tools

Export citation

Search in Google Scholar

The environments of the radio galaxy population in simba

Journal article published in 2022 by Nicole Thomas ORCID, Romeel Davé
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We investigate the environmental properties of the z = 0 radio galaxy population using the simba cosmological hydrodynamic simulation. We identify centrals and satellites from a population of high and low excitation radio galaxies (HERGs and LERGs) in simba, and study their global properties. We find that $∼ 20{{\ \rm per\ cent}}$ of radio galaxies are satellites, and that there are insignificant differences in the global properties of LERGs based on their central/satellite classification. HERG satellites display lower values of star formation, 1.4 GHz radio luminosity, and Eddington fractions than HERG centrals. We further investigate the environments of radio galaxies and show that HERGs typically live in less dense environments, similar to star-forming galaxies. The environments of high-mass LERGs are similar to non-radio galaxies, but low-mass LERGs live in underdense environments similar to HERGs. LERGs with overmassive black holes reside in the most dense environments, while HERGs with overmassive black holes reside in underdense environments. The richness of a LERG’s environment decreases with increasing Eddington fraction, and the environments of all radio galaxies do not depend on radio luminosity for $\, P_{\rm 1.4~GHz}\lt 10^{24} \rm {~W~Hz}^{-1}$. Complementing these results, we find that LERGs cluster on the same scale as the total galaxy population, while multiple HERGs are not found within the same dark matter halo. Finally, we show that high density environments support the growth of HERGs rather than LERGs at z = 2. Simba predicts that with more sensitive surveys, we will find populations of radio galaxies in environments much similar to the total galaxy population.