Published in

Public Library of Science, PLoS ONE, 8(17), p. e0271760, 2022

DOI: 10.1371/journal.pone.0271760

Links

Tools

Export citation

Search in Google Scholar

The effects of indoor temperature and humidity on local transmission of COVID-19 and how it relates to global trends

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During the COVID-19 pandemic, analyses on global data have not reached unanimous consensus on whether warmer and humid weather curbs the spread of the SARS-CoV-2 virus. We conjectured that this lack of consensus is due to the discrepancy between global environmental data such as temperature and humidity being collected outdoors, while most infections have been reported to occur indoors, where conditions can be different. Thus, we have methodologically investigated the effect of temperature and relative humidity on the spread of expired respiratory droplets from the mouth, which are assumed to be the main cause of most short-range infections. Calculating the trajectory of individual droplets using an experimentally validated evaporation model, the final height and distance of the evaporated droplets is obtained, and then correlated with global COVID-19 spread. Increase in indoor humidity is associated with reduction in COVID-19 spread, while temperature has no statistically significant effect.