Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 32(8), 2022

DOI: 10.1126/sciadv.abm6922

Links

Tools

Export citation

Search in Google Scholar

Assembly of complex 3D structures and electronics on curved surfaces

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Electronic devices with engineered three-dimensional (3D) architectures are indispensable for frictional-force sensing, wide-field optical imaging, and flow velocity measurement. Recent advances in mechanically guided assembly established deterministic routes to 3D structures in high-performance materials, through controlled rolling/folding/buckling deformations. The resulting 3D structures are, however, mostly formed on planar substrates and cannot be transferred directly onto another curved substrate. Here, we introduce an ordered assembly strategy to allow transformation of 2D thin films into sophisticated 3D structures on diverse curved surfaces. The strategy leverages predefined mechanical loadings that deform curved elastomer substrates into flat/cylindrical configurations, followed by an additional uniaxial/biaxial prestretch to drive buckling-guided assembly. Release of predefined loadings results in an ordered assembly that can be accurately captured by mechanics modeling, as illustrated by dozens of complex 3D structures assembled on curved substrates. Demonstrated applications include tunable dipole antennas, flow sensors inside a tube, and integrated electronic systems capable of conformal integration with the heart.