Published in

Hindawi, International Journal of Analytical Chemistry, (2022), p. 1-7, 2022

DOI: 10.1155/2022/5020255

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Alternative Transport Media for RT-qPCR-Based SARS-CoV-2 Testing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is still rapidly spreading as of March 2022. An accurate and rapid molecular diagnosis is essential to determine the exact number of confirmed cases. Currently, the viral transport medium (VTM) required for testing is in short supply due to a sharp increase in the laboratory tests performed, and alternative VTMs are needed to alleviate the shortage. Guanidine thiocyanate-based media reportedly inactivate SARS-CoV-2 and are compatible with quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays, but the compatibility and the viral detection capacity have not been fully validated. To evaluate the guanidine thiocyanate-based Gene Transport Medium (GeneTM) as an alternative VTM, we prepared 39 SARS-CoV-2-positive and 7 SARS-CoV-2-negative samples in GeneTM, eNAT™, and phosphate-buffered saline (PBS). The cycle threshold (Ct) values of three SARS-CoV-2 targets (the S, RdRP, and N genes) were analyzed using RT-qPCR testing. The comparison of Ct values from the positive samples showed a high correlation (R2= 0.95–0.96) between GeneTM and eNAT™, indicating a comparable viral detection capacity. The delta Ct values of the SARS-CoV-2 genes in each transport medium were maintained for 14 days at cold (4°C) or room (25°C) temperatures, suggesting viral samples were stably preserved in the transport media for 14 days. Together, GeneTM is a potential alternative VTM with comparable RT-qPCR performance and stability to those of standard media.