Published in

Applications of Digital Image Processing XXV

DOI: 10.1117/12.452334

Links

Tools

Export citation

Search in Google Scholar

Image Processing Issues in Digital Strain Mapping

Proceedings article published in 2002 by William F. Clocksin, Joao Quinta da Fonseca ORCID, P. J. Withers, Philip H. S. Torr
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We have developed high density image processing techniques for finding the surface strain of an untreated sample of material from a sequence of images taken during the application of force from a test rig. Not all motion detection algorithms have suitable functional characteristics for this task, as image sequences are characterised by both short- and long-range displacements, non-rigid deformations, as well as a low signal-to-noise ratio and methodological artifacts. We show how a probability-based motion detection algorithm can be used as a high confidence estimator of the strain tensor characterising the deformation of the material. An important issue discussed is how to minimise the number of image brightness differences that need to be calculated. We give results from two studies of materials under axial tension: a sample of aluminium alloy exhibiting a propagating plastic deformation, and a preparation of deer antler bone, a natural composite material.