Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, New Journal of Physics, 4(23), p. 043034, 2021

DOI: 10.1088/1367-2630/abf273

Links

Tools

Export citation

Search in Google Scholar

Anomalous cell sorting behavior in mixed monolayers discloses hidden system complexities

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In tissue development, wound healing and aberrant cancer progression cell–cell interactions drive mixing and segregation of cellular composites. However, the exact nature of these interactions is unsettled. Here we study the dynamics of packed, heterogeneous cellular systems using wound closure experiments. In contrast to previous cell sorting experiments, we find non-universal sorting behavior. For example, monolayer tissue composites with two distinct cell types that show low and high neighbor exchange rates (i.e., MCF-10A & MDA-MB-231) produce segregated domains of each cell type, contrary to conventional expectation that the construct should stay jammed in its initial configuration. On the other hand, tissue compounds where both cell types exhibit high neighbor exchange rates (i.e., MDA-MB-231 & MDA-MB-436) produce highly mixed arrangements despite their differences in intercellular adhesion strength. The anomalies allude to a complex multi-parameter space underlying these sorting dynamics, which remains elusive in simpler systems and theories merely focusing on bulk properties. Using cell tracking data, velocity profiles, neighborhood volatility, and computational modeling, we classify asymmetric interfacial dynamics. We indicate certain understudied facets, such as the effects of cell death & division, mechanical hindrance, active nematic behavior, and laminar & turbulent flow as their potential drivers. Our findings suggest that further analysis and an update of theoretical models, to capture the diverse range of active boundary dynamics which potentially influence self-organization, is warranted.