Published in

MDPI, Crystals, 8(12), p. 1147, 2022

DOI: 10.3390/cryst12081147

Links

Tools

Export citation

Search in Google Scholar

The Effect of DNA from Escherichia Coli at High and Low CO2 Concentrations on the Shape and Form of Crystal-line Silica-Carbonates of Barium (II)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The synthesis of nucleic acids in the Precambrian era marked the start of life, with DNA being the molecule in which the genetic information has been conserved ever since. After studying the DNA of different organisms for several decades, we now know that cell size and cellular differentiation are influenced by DNA concentration and environmental conditions. However, we still need to find out the minimum required concentration of DNA in the pioneer cell to control the resulting morphology. In order to do this, the present research aims to evaluate the influence of the DNA concentration on the morphology adopted by biomorphs (barium silica-carbonates) under two synthesis conditions: one emulating the Precambrian era and one emulating the present era. The morphology of the synthetized biomorphs was assessed through scanning electron microscopy (SEM). The chemical composition and the crystalline structure were determined through Raman and IR spectroscopy. Our results showed that DNA, even at relatively low levels, affects the morphology of the biomorph structure. They also indicated that, even at the low DNA concentration prevailing during the synthesis of the first DNA biomolecules existing in the primitive era, these biomolecules influenced the morphology of the inorganic structure that lodged it. On the other hand, this also allows us to infer that, once the DNA was synthetized in the Precambrian era, it was definitely responsible for generating, conserving, and directing the morphology of all organisms up to the present day.