Full text: Download
Abstract Drug-resistant mesial-temporal lobe epilepsy is a devastating disease with seizure onset in the hippocampal formation. A fraction of hippocampi samples from epilepsy-surgical procedures reveals a peculiar histological pattern referred to as ‘gliosis only’ with unresolved pathogenesis and enigmatic sequelae. Here, we hypothesize that ‘gliosis only’ represents a particular syndrome defined by distinct clinical and molecular characteristics. We curated an in-depth multiparameter integration of systematic clinical, neuropsychological as well as neuropathological analysis from a consecutive cohort of 627 patients, who underwent hippocampectomy for drug-resistant temporal lobe epilepsy. All patients underwent either classic anterior temporal lobectomy or selective amygdalohippocampectomy. On the basis of their neuropathological exam, patients with hippocampus sclerosis and ‘gliosis only’ were characterized and compared within the whole cohort and within a subset of matched pairs. Integrated transcriptional analysis was performed to address molecular differences between both groups. ‘Gliosis only’ revealed demographics, clinical and neuropsychological outcome fundamentally different from hippocampus sclerosis. ‘Gliosis only’ patients had a significantly later seizure onset (16.3 versus 12.2 years, P = 0.005) and worse neuropsychological outcome after surgery compared to patients with hippocampus sclerosis. Epilepsy was less amendable by surgery in ‘gliosis only’ patients, resulting in a significantly worse rate of seizure freedom after surgery in this subgroup (43% versus 68%, P = 0.0001, odds ratio = 2.8, confidence interval 1.7–4.7). This finding remained significant after multivariate and matched-pairs analysis. The ‘gliosis only’ group demonstrated pronounced astrogliosis and lack of significant neuronal degeneration in contrast to characteristic segmental neuron loss and fibrillary astrogliosis in hippocampus sclerosis. RNA-sequencing of gliosis only patients deciphered a distinct transcriptional programme that resembles an innate inflammatory response of reactive astrocytes. Our data indicate a new temporal lobe epilepsy syndrome for which we suggest the term ‘Innate inflammatory gliosis only’. ‘Innate inflammatory gliosis only’ is characterized by a diffuse gliosis pattern lacking restricted hippocampal focality and is poorly controllable by surgery. Thus, ‘innate inflammatory gliosis only’ patients need to be clearly identified by presurgical examination paradigms of pharmacoresistant temporal lobe epilepsy patients; surgical treatment of this subgroup should be considered with great precaution. ‘Innate inflammatory gliosis only’ requires innovative pharmacotreatment strategies.