Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Pharmaceutics, 8(14), p. 1738, 2022

DOI: 10.3390/pharmaceutics14081738

Links

Tools

Export citation

Search in Google Scholar

Investigations on Cellular Uptake Mechanisms and Immunogenicity Profile of Novel Bio-Hybrid Nanovesicles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In drug delivery, the development of nanovesicles that combine both synthetic and cellular components provides added biocompatibility and targeting specificity in comparison to conventional synthetic carriers such as liposomes. Produced through the fusion of U937 monocytes’ membranes and synthetic lipids, our nano-cell vesicle technology systems (nCVTs) showed promising results as targeted cancer treatment. However, no investigation has been conducted yet on the immunogenic profile and the uptake mechanisms of nCVTs. Hence, this study was aimed at exploring the potential cytotoxicity and immune cells’ activation by nCVTs, as well as the routes through which cells internalize these biohybrid systems. The endocytic pathways were selectively inhibited to establish if the presence of cellular components in nCVTs affected the internalization route in comparison to both liposomes (made up of synthetic lipids only) and nano-cellular membranes (made up of biological material only). As a result, nCVTs showed an 8-to-40-fold higher cellular internalization than liposomes within the first hour, mainly through receptor-mediated processes (i.e., clathrin- and caveolae-mediated endocytosis), and low immunostimulatory potential (as indicated by the level of IL-1α, IL-6, and TNF-α cytokines) both in vitro and in vivo. These data confirmed that nCVTs preserved surface cues from their parent U937 cells and can be rationally engineered to incorporate ligands that enhance the selective uptake and delivery toward target cells and tissues.