Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 15(24), p. 12340, 2023

DOI: 10.3390/ijms241512340

Links

Tools

Export citation

Search in Google Scholar

Antarctic Soil Metabolomics: A Pilot Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In Antarctica, ice-free areas can be found along the coast, on mountain peaks, and in the McMurdo Dry Valleys, where microorganisms well-adapted to harsh conditions can survive and reproduce. Metabolic analyses can shed light on the survival mechanisms of Antarctic soil communities from both coastal sites, under different plant coverage stages, and inner sites where slow-growing or dormant microorganisms, low water availability, salt accumulation, and a limited number of primary producers make metabolomic profiling difficult. Here, we report, for the first time, an efficient protocol for the extraction and the metabolic profiling of Antarctic soils based on the combination of NMR spectroscopy and mass spectrometry (MS). This approach was set up on samples harvested along different localities of Victoria Land, in continental Antarctica, devoid of or covered by differently developed biological crusts. NMR allowed for the identification of thirty metabolites (mainly sugars, amino acids, and organic acids) and the quantification of just over twenty of them. UPLC-MS analysis identified more than twenty other metabolites, in particular flavonoids, medium- and long-chain fatty acids, benzoic acid derivatives, anthracenes, and quinones. Our results highlighted the complementarity of the two analytical techniques. Moreover, we demonstrated that their combined use represents the “gold standard” for the qualitative and quantitative analysis of little-explored samples, such as those collected from Antarctic soils.