Springer, Bulletin of Volcanology, 9(84), 2022
DOI: 10.1007/s00445-022-01586-0
Full text: Download
AbstractSince the 1919 foundation of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), the fields of volcano seismology and acoustics have seen dramatic advances in instrumentation and techniques, and have undergone paradigm shifts in the understanding of volcanic seismo-acoustic source processes and internal volcanic structure. Some early twentieth-century volcanological studies gave equal emphasis to barograph (infrasound and acoustic-gravity wave) and seismograph observations, but volcano seismology rapidly outpaced volcano acoustics and became the standard geophysical volcano-monitoring tool. Permanent seismic networks were established on volcanoes (for example) in Japan, the Philippines, Russia, and Hawai‘i by the 1950s, and in Alaska by the 1970s. Large eruptions with societal consequences generally catalyzed the implementation of new seismic instrumentation and led to operationalization of research methodologies. Seismic data now form the backbone of most local ground-based volcano monitoring networks worldwide and play a critical role in understanding how volcanoes work. The computer revolution enabled increasingly sophisticated data processing and source modeling, and facilitated the transition to continuous digital waveform recording by about the 1990s. In the 1970s and 1980s, quantitative models emerged for long-period (LP) event and tremor sources in fluid-driven cracks and conduits. Beginning in the 1970s, early models for volcano-tectonic (VT) earthquake swarms invoking crack tip stresses expanded to involve stress transfer into the wall rocks of pressurized dikes. The first deployments of broadband seismic instrumentation and infrasound sensors on volcanoes in the 1990s led to discoveries of new signals and phenomena. Rapid advances in infrasound technology; signal processing, analysis, and inversion; and atmospheric propagation modeling have now established the role of regional (15–250 km) and remote (> 250 km) ground-based acoustic systems in volcano monitoring. Long-term records of volcano-seismic unrest through full eruptive cycles are providing insight into magma transport and eruption processes and increasingly sophisticated forecasts. Laboratory and numerical experiments are elucidating seismo-acoustic source processes in volcanic fluid systems, and are observationally constrained by increasingly dense geophysical field deployments taking advantage of low-power, compact broadband, and nodal technologies. In recent years, the fields of volcano geodesy, seismology, and acoustics (both atmospheric infrasound and ocean hydroacoustics) are increasingly merging. Despite vast progress over the past century, major questions remain regarding source processes, patterns of volcano-seismic unrest, internal volcanic structure, and the relationship between seismic unrest and volcanic processes.