Dissemin is shutting down on January 1st, 2025

Published in

Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, Quantum, (6), p. 783, 2022

DOI: 10.22331/q-2022-08-23-783

Links

Tools

Export citation

Search in Google Scholar

Coplanar Antenna Design for Microwave Entangled Signals Propagating in Open Air

Journal article published in 2022 by Tasio Gonzalez-Raya ORCID, Mikel Sanz
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Open-air microwave quantum communication and metrology protocols must be able to transfer quantum resources from a cryostat, where they are created, to an environment dominated by thermal noise. Indeed, the states carrying such quantum resources are generated in a cryostat characterized by a temperature Tin≃50 mK and an intrinsic impedance Zin=50Ω. Then, an antenna-like device is required to transfer them with minimal losses into open air, characterized by an intrinsic impedance of Zout=377Ω and a temperature Tout≃300 K. This device accomplishes a smooth impedance matching between the cryostat and the open air. Here, we study the transmission of two-mode squeezed thermal states, developing a technique to design the optimal shape of a coplanar antenna to preserve the entanglement. Based on a numerical optimization procedure, we find the optimal shape of the impedance, and we propose a functional ansatz to qualitatively describe this shape. Additionally, this study reveals that the reflectivity of the antenna is very sensitive to this shape, so that small changes dramatically affect the outcoming entanglement, which could have been a limitation in previous experiments employing commercial antennae. This work is relevant in the fields of microwave quantum sensing and quantum metrology with special application to the development of the quantum radar, as well as any open-air microwave quantum communication protocol.