Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Physics of Plasmas, 8(29), p. 082705, 2022

DOI: 10.1063/5.0102167

Links

Tools

Export citation

Search in Google Scholar

Analysis of core asymmetries in inertial confinement fusion implosions using three-dimensional hot-spot reconstruction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Three-dimensional effects play a crucial role during the hot-spot formation in inertial confinement fusion (ICF) implosions. A data analysis technique for 3D hot-spot reconstruction from experimental observables has been developed to characterize the effects of low modes on 3D hot-spot formations. In nuclear measurements, the effective flow direction, governed by the maximum eigenvalue in the velocity variance of apparent ion temperatures, has been found to agree with the measured hot-spot flows for implosions dominated by mode [Formula: see text]. Asymmetries in areal-density ( ρR) measurements were found to be characterized by a unique cosine variation along the hot-spot flow axis. In x-ray images, a 3D hot-spot x-ray emission tomography method was developed to reconstruct the 3D hot-spot plasma emissivity using a generalized spherical-harmonic Gaussian function. The gradient-descent algorithm was used to optimize the mapping between the projections from the 3D hot-spot emission model and the measured x-ray images along multiple views. This work establishes a platform to analyze 3D low-mode core asymmetries in ICF.