Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 36(119), 2022

DOI: 10.1073/pnas.2206946119

Links

Tools

Export citation

Search in Google Scholar

Controlled growth of a high selectivity interface for seawater electrolysis

Journal article published in 2022 by Yang Gao, Yurui Xue, Feng He ORCID, Yuliang Li
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Overall seawater electrolysis is an important direction for the development of hydrogen energy conversion. The key issues include how to achieve high selectivity, activity, and stability in seawater electrolysis reactions. In this report, the heterostructures of graphdiyne-RhO x -graphdiyne (GDY/RhO x /GDY) were constructed by in situ-controlled growth of GDY on RhO x nanocrystals. A double layer interface of sp -hybridized carbon-oxide-Rhodium ( sp -C∼O-Rh) was formed in this system. The microstructures at the interface are composed of active sites of sp -C∼O-Rh. The obvious electron-withdrawing surface enhances the catalytic activity with orders of magnitude, while the GDY outer of the metal oxides guarantees the stability. The electron-donating and withdrawing sp -C∼O-Rh structures enhance the catalytic activity, achieving high-performance overall seawater electrolysis with very small cell voltages of 1.42 and 1.52 V at large current densities of 10 and 500 mA cm −2 at room temperatures and ambient pressures, respectively. The compositional and structural superiority of the GDY-derived sp -C-metal-oxide active center offers great opportunities to engineer tunable redox properties and catalytic performance for seawater electrolysis and beyond. This is a typical successful example of the rational design of catalytic systems.