Published in

Wiley, New Phytologist, 3(235), p. 1146-1162, 2022

DOI: 10.1111/nph.18190

Links

Tools

Export citation

Search in Google Scholar

Overexpression of NDR1 leads to pathogen resistance at elevated temperatures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Abiotic and biotic environments influence a myriad of plant‐related processes, including growth, development, and the establishment and maintenance of interaction(s) with microbes. In the case of the latter, elevated temperature has been shown to be a key factor that underpins host resistance and pathogen virulence. In this study, we elucidate a role for Arabidopsis NON‐RACE‐SPECIFIC DISEASE RESISTANCE1 (NDR1) by exploiting effector‐triggered immunity to define the regulation of plant host immunity in response to both pathogen infection and elevated temperature. We generated time‐series RNA sequencing data of WT Col‐0, an NDR1 overexpression line, and ndr1 and ics1‐2 mutant plants under elevated temperature. Not surprisingly, the NDR1‐overexpression line showed genotype‐specific gene expression changes related to defense response and immune system function. The results described herein support a role for NDR1 in maintaining cell signaling during simultaneous exposure to elevated temperature and avirulent pathogen stressors.