Dissemin is shutting down on January 1st, 2025

Published in

Universidad Nacional de Colombia, Acta Biológica Colombiana, 1(28), p. 128-134, 2023

DOI: 10.15446/abc.v28n1.97151

Links

Tools

Export citation

Search in Google Scholar

ECOPHYSIOLOGY AND GROWTH OF BASIL (≪i>Ocimum Basilicum</I>) UNDER SALINE STRESS AND SALICYLIC ACID

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Salinity is one of the major problems of modern agriculture, affecting physiological, growth and plant production. Basil (Ocimum basilicum) is a plant widely used in cooking, and in the pharmaceutical and cosmetics industries. Salicylic acid can be a strategy to mitigate the harmful effects of saline stress on basil plant. The present study aimed to evaluate plants with, gas exchange, chlorophyll a fluorescence and chlorophyll indices of basil (cv. Cinnamon) plants under saline stress and salicylic acid. The experimental design was a randomized block design in a 5x5 incomplete factorial scheme generated through the central composite design. The factors we five electrical conductivities of irrigation water (ECw– 0.5, 1.3, 3.25, 5.2 and 6.0 dS m-1) and five doses of salicylic acid (SA– 0.0, 0.29, 1.0, 1.71 and 2.0 mM), with five replications and two plants per replicate. Growth, gas exchange, chlorophyll a fluorescence and chlorophyll indices of O. basilicum cv. Cinnamon were evaluated. Canonical variables analysis and confidence ellipses (p ≤ 0.01) were performed to study the interrelationship between variables and factors. Salicylic acid alleviated the deleterious effects of salt stress on growth, gas exchange, chlorophyll fluorescence and chlorophyll indices of basil.