Published in

Optica, Optics Express, 21(30), p. 37595, 2022

DOI: 10.1364/oe.467920

Links

Tools

Export citation

Search in Google Scholar

Integration of GaAs waveguides on a silicon substrate for quantum photonic circuits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report a method for integrating GaAs waveguide circuits containing self-assembled quantum dots on a Si/SiO2 wafer, using die-to-wafer bonding. The large refractive-index contrast between GaAs and SiO2 enables fabricating single-mode waveguides without compromising the photon-emitter coupling. Anti-bunched emission from individual quantum dots is observed, along with a waveguide propagation loss <7 dB/mm, which is comparable with the performance of suspended GaAs circuits. These results enable the integration of quantum emitters with different material platforms, towards the realization of scalable quantum photonic integrated circuits.