Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 10(121), p. 102601, 2022

DOI: 10.1063/5.0109753

Links

Tools

Export citation

Search in Google Scholar

Non-reciprocity of vortex-limited critical current in conventional superconducting micro-bridges

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Non-reciprocity in the critical current has been observed in a variety of superconducting systems and has been called the superconducting diode effect. The origin underlying the effect depends on the symmetry breaking mechanisms at play. We investigate superconducting micro-bridges of NbN and also NbN/magnetic insulator (MI) hybrids. We observe a large diode efficiency of [Formula: see text]30% when an out-of-plane magnetic field as small as 25 mT is applied. In both NbN and NbN/MI hybrid, we find that the diode effect vanishes when the magnetic field is parallel to the sample plane. Our observations are consistent with the critical current being determined by the vortex surface barrier. Unequal barriers on the two edges of the superconductor strip result in the diode effect. Furthermore, the rectification is observed up to 10 K, which makes the device potential for diode based applications over a larger temperature range than before.