Published in

MDPI, Medicina, 9(58), p. 1238, 2022

DOI: 10.3390/medicina58091238

Links

Tools

Export citation

Search in Google Scholar

Association between Microbiome-Related Human Genetic Variants and Fasting Plasma Glucose in a High-Cardiovascular-Risk Mediterranean Population

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background and Objectives: The gut microbiota has been increasingly recognized as a relevant factor associated with metabolic diseases. However, directly measuring the microbiota composition is a limiting factor for several studies. Therefore, using genetic variables as proxies for the microbiota composition is an important issue. Landmark microbiome–host genome-wide association studies (mbGWAS) have identified many SNPs associated with gut microbiota. Our aim was to analyze the association between relevant microbiome-related genetic variants (Mi-RSNPs) and fasting glucose and type 2 diabetes in a Mediterranean population, exploring the interaction with Mediterranean diet adherence. Materials and Methods: We performed a cross-sectional study in a high-cardiovascular-risk Mediterranean population (n = 1020), analyzing the association of Mi-RSNPs (from four published mbGWAS) with fasting glucose and type 2 diabetes. A single-variant approach was used for fitting fasting glucose and type 2 diabetes to a multivariable regression model. In addition, a Mendelian randomization analysis with multiple variants was performed as a sub-study. Results: We obtained several associations between Mi-RSNPs and fasting plasma glucose involving gut Gammaproteobacteria_HB, the order Rhizobiales, the genus Rumminococcus torques group, and the genus Tyzzerella as the top ranked. For type 2 diabetes, we also detected significant associations with Mi-RSNPs related to the order Rhizobiales, the family Desulfovibrionaceae, and the genus Romboutsia. In addition, some Mi-RSNPs and adherence to Mediterranean diet interactions were detected. Lastly, the formal Mendelian randomization analysis suggested combined effects. Conclusions: Although the use of Mi-RSNPs as proxies of the microbiome is still in its infancy, and although this is the first study analyzing such associations with fasting plasma glucose and type 2 diabetes in a Mediterranean population, some interesting associations, as well as modulations, with adherence to the Mediterranean diet were detected in these high-cardiovascular-risk subjects, eliciting new hypotheses.