Published in

MDPI, Nanomaterials, 18(12), p. 3093, 2022

DOI: 10.3390/nano12183093

Links

Tools

Export citation

Search in Google Scholar

Sb Nanoparticles Embedded in the N-Doped Carbon Fibers as Binder-Free Anode for Flexible Li-Ion Batteries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Antimony (Sb) is considered a promising anode for Li-ion batteries (LIBs) because of its high theoretical specific capacity and safe Li-ion insertion potential; however, the LIBs suffer from dramatic volume variation. The volume expansion results in unstable electrode/electrolyte interphase and active material exfoliation during lithiation and delithiation processes. Designing flexible free-standing electrodes can effectively inhibit the exfoliation of the electrode materials from the current collector. However, the generally adopted methods for preparing flexible free-standing electrodes are complex and high cost. To address these issues, we report the synthesis of a unique Sb nanoparticle@N-doped porous carbon fiber structure as a free-standing electrode via an electrospinning method and surface passivation. Such a hierarchical structure possesses a robust framework with rich voids and a stable solid electrolyte interphase (SEI) film, which can well accommodate the mechanical strain and avoid electrode cracks and pulverization during lithiation/delithiation processes. When evaluated as an anode for LIBs, the as-prepared nanoarchitectures exhibited a high initial reversible capacity (675 mAh g−1) and good cyclability (480 mAh g−1 after 300 cycles at a current density of 400 mA g−1), along with a superior rate capability (420 mA h g−1 at 1 A g−1). This work could offer a simple, effective, and efficient approach to improve flexible and free-standing alloy-based anode materials for high performance Li-ion batteries.