Dissemin is shutting down on January 1st, 2025

Published in

PAGEpress, Italian Journal of Agronomy, 3(17), 2022

DOI: 10.4081/ija.2022.2130

Links

Tools

Export citation

Search in Google Scholar

Impact of irrigation water deficit on two tomato genotypes grown under open field conditions: From the root-associated microbiota to the stress responses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In the context of the climate change scenario in the Mediterranean, natural root-microorganism associations have an impact on the resilience and productivity of crops, and the exploitation of these interactions represents innovative, cost-effective and sustainable crop adaptation strategies. An open field experiment with two commercial Italian tomato cultivars was performed. The soil bacterial communities associated with the two commercial Italian tomato genotypes were characterized alongside their physiological and molecular responses under wellwatered and moderate water deficit (100% and 75% of crop evapotranspiration) treatments. The two genotypes showed contrasting responses to water deficit, primarily through diverse rhizosphere microbiota recruitment under the two irrigation treatments. Highlights - Two tomato genotypes were studied under water deficit in a pilot field trial. - The two genotypes responded differently to water stress from eco-physiological and transcriptomic points of view. - The two genotypes recruited diverse root-associated microbiota, particularly under water deficit.