Published in

IOP Publishing, New Journal of Physics, 9(24), p. 093039, 2022

DOI: 10.1088/1367-2630/ac924f

Links

Tools

Export citation

Search in Google Scholar

Noisy pursuit and pattern formation of self-steering active particles

Journal article published in 2022 by Segun Goh ORCID, Roland G. Winkler ORCID, Gerhard Gompper ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We consider a moving target and an active pursing agent, modeled as an intelligent active Brownian particle capable of sensing the instantaneous target location and adjusting its direction of motion accordingly. An analytical and simulation study in two spatial dimensions reveals that pursuit performance depends on the interplay between self-propulsion, active reorientation, limited maneuverability, and random noise. Noise is found to have two opposing effects: (i) it is necessary to disturb regular, quasi-elliptical orbits around the target, and (ii) slows down pursuit by increasing the traveled distance of the pursuer. For a stationary target, we predict a universal scaling behavior of the mean pursuer–target distance and of the mean first-passage time as a function of Pe2/Ω, where the Péclet number Pe characterizes the activity and Ω the maneuverability. Importantly, the scaling variable Pe2/Ω depends implicitly on the level of thermal or active noise. A similar behavior is found for a moving target, but modified by the velocity ratio α = u 0/v 0 of target and pursuer velocities u 0 and v 0, respectively. We also propose a strategy to sort active pursuers according to their motility by circular target trajectories.