Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Coatings, 9(12), p. 1360, 2022

DOI: 10.3390/coatings12091360

Links

Tools

Export citation

Search in Google Scholar

Effects of Cu-Ni-Ti Interlayer on Microstructure and Wear Resistance around Gas Tungsten Arc Cladding Copper Matrix Composite Coatings on Steel

Journal article published in 2022 by Jihong Li, Longyu Lei, Mingke Du, Zhiqiang Zhang, Min Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Due to the huge difference in thermophysical properties, it is difficult to obtain a defect-free bonding interface between copper and steel. A Cu-Ni-Ti interlayer was added between a TiC-reinforced copper matrix composite coating and Q235 steel in this study to improve its interfacial bond. The influence of the interlayer on its microstructure and properties was studied by characterizing microstructure, phase composition, and wear resistance of the composite coatings. Both coatings were found to consist of α-Cu matrix, in situ-generated TiC, and Fe-rich phases. With the addition of the Cu-Ni-Ti interlayer, the high-hardness unmixed zone at the interface was successfully eliminated due to the sufficient mixing of the molten pool. Even more importantly, liquid metal embrittlement cracks were also restrained, resulting from the Fe-rich solid solution band that reduced the contact probability around liquid copper atoms with the steel grain boundaries formed. In addition, the results showed that the microhardness of composite coatings was improved and the wear loss reduced by 4.2% after adding that interlayer, which was related to the combined action of solid solution strengthening, second-phase strengthening and grain-refinement strengthening mechanisms.