Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, npj Quantum Materials, 1(7), 2022

DOI: 10.1038/s41535-022-00499-7

Links

Tools

Export citation

Search in Google Scholar

Critical topology and pressure-induced superconductivity in the van der Waals compound AuTe2Br

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe study on quantum spin Hall effect and topological insulators formed the prologue to the surge of research activities in topological materials in the past decade. Compared to intricately engineered quantum wells, three-dimensional weak topological insulators provide a natural route to the quantum spin Hall effect, due to the adiabatic connection between them and a stack of quantum spin Hall insulators, and the convenience in exfoliation of samples associated with their van der Waals-type structure. Despite these advantages, both theoretical prediction and experimental identification of weak topological insulators remain scarce. Here, based on first-principles calculations, we show that AuTe2Br locates at the boundary between a strong and a weak topological semimetal state. We identify the key structural parameter that dictates the traversal of the topological transition, which can be easily realized in experiments. More interestingly, the critical topology of AuTe2Br persists up to an applied pressure of ~15.4 GPa before a structural phase transition accompanied by a change of electronic topology and the onset of superconductivity. Our results establish AuTe2Br as a new candidate for an effective tuning between weak and strong topological phases in a single material, with the potential to realize various other topological phases of matter.