Springer Verlag, Photonic Network Communications, 2(8), p. 163-176
DOI: 10.1023/b:pnet.0000033976.33668.65
Full text: Download
We address the problem of congestion resolution in optical packet switching (OPS). We consider a fairly generic all-optical packet switch architecture with a feedback optical buffer constituted of fiber delay lines (FDL). Two alternatives of switching granularity are addressed for a switch operating in a slotted transfer mode: switching at the slot level (i.e., fixed length packets of a single slot) or at the burst level (variable length packets that are integer multiples of the slot length). For both cases, we show that in spite of the limited queuing resources, acceptable performance in terms of packet loss can be achieved for reasonable hardware resources with an appropriate design of the time/wavelength scheduling algorithms. Depending on the switching units (slots or bursts), an adapted scheduling algorithm needs to be deployed to exploit the bandwidth and buffer resources most efficiently.