Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Nano Letters, 9(7), p. 2769-2773, 2007

DOI: 10.1021/nl0713068

Links

Tools

Export citation

Search in Google Scholar

Fluorescence lifetimes and correlated photon statistics from single CdSe/oligo(phenylene vinylene) composite nanostructures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present measurements of fluorescence intensity trajectories and associated excited-state decay times from individual CdSe/oligo(phenylene vinylene) (CdSe-OPV) quantum dot nanostructures using time-tagged, time-resolved (TTTR) photon counting techniques. We find that fluorescence decay times for the quantum dot emitter in these composite systems are at least an order of magnitude shorter than ZnS-capped CdSe quantum dot systems. We show that both the blinking suppression and associated lifetime/count rate behavior can be described by a modified version of the diffusive reaction coordinate model which couples slow fluctuations in quantum dot electron (1Se, 1Pe) energies to Auger-assisted hole trapping processes, hence modifying both blinking statistics and excited-state decay rates.