Published in

Oxford University Press, The Plant Cell, 12(34), p. 4677-4695, 2022

DOI: 10.1093/plcell/koac287

Links

Tools

Export citation

Search in Google Scholar

Anther development—The long road to making pollen

Journal article published in 2022 by D. Blaine Marchant ORCID, Virginia Walbot ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Anthers express the most genes of any plant organ, and their development involves sequential redifferentiation of many cell types to perform distinctive roles from inception through pollen dispersal. Agricultural yield and plant breeding depend on understanding and consequently manipulating anthers, a compelling motivation for basic plant biology research to contribute. After stamen initiation, two theca form at the tip, and each forms an adaxial and abaxial lobe composed of pluripotent Layer 1-derived and Layer 2-derived cells. After signal perception or self-organization, germinal cells are specified from Layer 2-derived cells, and these secrete a protein ligand that triggers somatic differentiation of their neighbors. Historically, recovery of male-sterile mutants has been the starting point for studying anther biology. Many genes and some genetic pathways have well-defined functions in orchestrating subsequent cell fate and differentiation events. Today, new tools are providing more detailed information; for example, the developmental trajectory of germinal cells illustrates the power of single cell RNA-seq to dissect the complex journey of one cell type. We highlight ambiguities and gaps in available data to encourage attention on important unresolved issues.